Flame detectors are solutions for virtually any application where fire may result in a large loss of capital equipment and where risk to personnel is high. Industrial and commercial applications include oil and gas pipelines, turbine enclosures, off-shore platforms, automotive manufacturing facilities, aircraft hangers, munitions plants, nuclear facilities, and many, many more. Numerous industries such as those involved in manufacturing, processing, storing or transportation of flammable materials, and commercial centers rely on a flame monitoring system for safety. At the core of the system is a crucial component - the flame detector. The flame detector is basically an optical sensor which detects the heat and communicates to a control board.
Most Flame detectors identify flames by so-called optical methods like ultraviolet (UV) and infrared (IR) spectroscopy and visual flame imaging. Flames in a refinery, for example, are generally fueled by hydrocarbons, which when supplied with oxygen and an ignition source, produce heat, carbon dioxide, and other products of combustion. The intense reaction is characterized by the emission of visible, UV, and IR radiation. Flame detectors are designed to detect the absorption of light at specific wavelengths, allowing them to discriminate between flames and false alarm sources.
Process and plant engineers in the oil and gas, process and manufacturing industries require continuous flame monitoring equipment to prevent catastrophic fires. In order to select such detection equipment, users should endeavor to understand the principles of flame detection and review the types of detectors available today. Armed with this knowledge they will be better able to match the appropriate flame detector to process and site performance requirements and to the type of hazard whose consequences the instrument is designed to mitigate.